14 research outputs found

    Roadmap on Biological Pathways for Electronic Nanofabrication and Materials

    Get PDF
    Conventional microchip fabrication is energy and resource intensive. Thus, the discovery of new manufacturing approaches that reduce these expenditures would be highly beneficial to the semiconductor industry. In comparison, living systems construct complex nanometer-scale structures with high yields and low energy utilization. Combining the capabilities of living systems with synthetic DNA-/protein-based self-assembly may offer intriguing potential for revolutionizing the synthesis of complex sub-10 nm information processing architectures. The successful discovery of new biologically based paradigms would not only help extend the current semiconductor technology roadmap, but also offer additional potential growth areas in biology, medicine, agriculture and sustainability for the semiconductor industry. This article summarizes discussions surrounding key emerging technologies explored at the Workshop on Biological Pathways for Electronic Nanofabrication and Materials that was held on 16–17 November 2016 at the IBM Almaden Research Center in San Jose, CA

    Metrology of DNA Arrays by Super-Resolution Microscopy

    Get PDF
    Recent results in the assembly of DNA into structures and arrays with nanoscale features and patterns have opened the possibility of using DNA for sub-10 nm lithographic patterning of semiconductor devices. Super-resolution microscopy is being actively developed for DNA-based imaging and is compatible with inline optical metrology techniques for high volume manufacturing. Here, we combine DNA tile assembly with state-dependent super-resolution microscopy to introduce crystal-PAINT as a novel approach for metrology of DNA arrays. Using this approach, we demonstrate optical imaging and characterization of DNA arrays revealing grain boundaries and the temperature dependence of array quality. For finite arrays, analysis of crystal-PAINT images provides further quantitative information of array properties. This metrology approach enables defect detection and classification and facilitates statistical analysis of self-assembled DNA nanostructures

    An Alternative Approach to Nucleic Acid Memory

    Get PDF
    DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with ‘Data is in our DNA!\n’ are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material

    Structural DNA Nanotechnology: From Design to Applications

    No full text
    Abstract: The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures

    CAGE: Chromatin Analogous Gene Expression

    No full text
    Self-assembled nucleic acids perform biological, chemical, and mechanical work at the nanoscale. DNA-based molecular machines have been designed here to perform work by reacting with cancer-specific miRNA mimics and then regulating gene expression <i>in vitro</i> by tuning RNA polymerase activity. Because RNA production is topologically restrained, the machines demonstrate chromatin analogous gene expression (CAGE). With modular and tunable design features, CAGE has potential for molecular biology, synthetic biology, and personalized medicine applications

    Supramolecular aptamer nano-constructs for receptor-mediated targeting and light-triggered release of chemotherapeutics into cancer cells

    Get PDF
    Effective therapeutic platforms should combine serum stability, selective targeting, and controlled drug release. Here, the authors self-assemble an aptamer-based nanoscaffold that contains separate cell-targeting and photo-regulated drug-carrying domains, realizing multiple therapeutic functionalities in a single construct

    A Coding Scheme for Nucleic Acid Memory (NAM)

    No full text
    The global demand for digital data is projected to be greater than the supply of semiconductor grade silicon in 2040 [1]. When combined with the need to archive information [2], nucleic acids are being explored as an alternative memory material [1-7]. According to a recent study, the information density of nucleic acid memory (NAM) is one thousand times greater than flash memory and has the ability to last for hundreds of years [1]. Presented here is an algorithm for converting digital data into unique DNA sequences for glacial storage. Biologically inspired, our coding scheme maps hexadecimal characters to sequences of three DNA nucleotides. This mapping avoids repeating sequences and start codons, which could have adverse effects. We were able to encode and decode various file types without error

    Nucleic Acid Memory

    No full text
    Nucleic acid memory has a retention time far exceeding electronic memory. As an alternative storage media, DNA surpasses the information density and energy of operation offered by flash memory

    Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami

    No full text
    The DNA origami technique is a recently developed self-assembly method that allows construction of 3D objects at the nanoscale for various applications. In the current study we report the production of a 18 × 18 × 24 nm<sup>3</sup> hollow DNA box origami structure with a switchable lid. The structure was efficiently produced and characterized by atomic force microscopy, transmission electron microscopy, and Förster resonance energy transfer spectroscopy. The DNA box has a unique reclosing mechanism, which enables it to repeatedly open and close in response to a unique set of DNA keys. This DNA device can potentially be used for a broad range of applications such as controlling the function of single molecules, controlled drug delivery, and molecular computing
    corecore